situation,

$$F_B(X) \approx F_N \left(\frac{X + 0.5 - np}{\sqrt{np(1-p)}} \right),$$

where F_B and F_N are the cumulative binomial and normal distributions, respectively.

3.7 Problems

1. Some games use tetrahedral dice that have four triangular faces that are numbered 1 through 4. Assume each face is equally likely to land face down.

- (a) Determine the probability density function f for the total number (X) on the down faces of 2 such tetrahedron-shaped dice thrown together.
- (b) Calculate the cumulative distribution function of X.
- (c) Using expected values, find the mean and variance of X.
- (d) Find f(7).
- (e) Find F(7).
- (f) Describe in complete sentences the meaning of f(7) and F(7).
- (g) Find $P(3 < X \le 7)$.
- (h) Find $P(3 \le X \le 7)$.
- (i) Find P(X > 6).
- 2. In a certain population of koala, *Phascolarctos cinereus*, the heights of individuals are distributed as indicated by the density curve shown below. Areas under the curve are shown in the figure. Let X represent the length of an individual koala chosen at random from the population. Find the following.

- (a) P(X < 55)
- (b) $P(55 < X \le 65)$
- (c) P(X=55)
- (d) F(65)
- (e) P(X > 65)
- (f) Why do you think the density is bimodal for this population?